当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]为 FPGA 应用设计优秀电源管理解决方案不是一项简单的任务,相关的技术讨论有很多很多。今天小编要为大家分享的内容『FPGA 的电源管理』主要有两个目的——

为 FPGA 应用设计优秀电源管理解决方案不是一项简单的任务,相关的技术讨论有很多很多。今天小编要为大家分享的内容『FPGA 的电源管理』主要有两个目的——

找到正确解决方案并选择最合适的电源管理产品

如何优化实际解决方案使其用于 FPGA

找到合适的电源解决方案

寻找为 FPGA 供电的最佳解决方案并不简单。许多供应商以适合为 FPGA 供电的名义推销某些产品。为 FPGA 供电的 DC-DC 转换器选择有何特定要求?其实并不多。一般而言,所有电源转换器都可用来为 FPGA 供电。推荐某些产品通常是基于以下事实:许多FPGA应用需要多个电压轨,例如用于 FPGA 内核和 I/O,还可能需要额外的电 压轨来用于 DDR 存储器。将多个DC-DC 转换器全部集成到单个稳压器芯片中的 PMIC(电源管理集成电路)常常是首选。

一种为特定 FPGA 寻找优秀供电解决方案的流行方法是使用许多 FPGA 供应商都提供的已有电源管理参考设计。这对于优化设计来说是一个很好的入门方式。但此类设计往往需要修改,因为

FPGA 系统通常需要额外的电压轨和负载,这些也需要供电;

在参考设计上增加一些东西常常也是必要的;

FPGA 的输入电源不是固定的,输入电压在很大程度上取决于实际的逻辑电平以及 FPGA 所实现的设计。

完成对电源管理参考设计的修改之后,它看起来将与最初的参考设计不同。可能有人会辩称,最好的解决方案是根本不用电源管理参考设计,而是直接将所需的电压轨和电流输入到电源管理选型与优化工具中,例如 ADI 公司的 LTpowerCAD 等。

LTpowerCAD 可用来为各个电压轨提供电源解决方案。它还提供一系列参考设计,以让设计人员快速入门。LTpowerCAD 可以从 ADI 公司网站免费下载。?下载链接:http://www.analog.com/cn/design-center/ltpowercad.html

如何优化实际解决方 案以用于FPGA

一旦选择了电源架构和各个电压转换器,就需要选择合适的无源元件来设计电源。做这件事时,需要牢记 FPGA 的特殊负载要求——

各项电流需求

电压轨时序控制

电压轨单调上升

快速电源瞬变

电压精度

FPGA 输入电容

各项电流需求

FPGA 的实际电流消耗在很大程度上取决于使用情况。不同的时钟和不同的FPGA 内容需要不同的功率。因此,在 FPGA 系统的设计过程中,典型 FPGA 设计的最终电源规格必然会发生变化。FPGA 制造商提供的功率估算工具有助于计算解决方案所需的功率等级。在构建实际硬件之前,获得这些信息会非常有用。但是,为了利用此类功率估算工具获得有意义的结果,FPGA 的设计必须最终确定,或者至少接近最终完成。

通常情况下,工程师设计电源时考虑的是最大 FPGA 电流。如果最终发现实际 FPGA 设计需要的功率更少,设计人员就会缩减电源。

电压轨时序控制

许多 FPGA 要求不同电源电压轨以特定顺序上电。内核电压的供应往往需要早于 I/O 电压的供应,否则一些 FPGA 会被损坏。为了避免这种情况,电源需要按正确的顺序上电。使用标准 DC-DC 转换器上的使能引脚,可以轻松实现简单的上电时序控制。然而,器件关断通常也需要时序控制。仅执行使能引脚时序控制,很难取得良好的结果。更好的解决办法是使用具有高级集成时序控制功能的 PMIC,例如 ADP5014。

如果使用多个单独的电源,增加时序控制芯片便可实现所需的上电/关断顺序。一个例子是 LTC2924,它既能控制 DC-DC 转换器的使能引脚来打开和关闭电源,也能驱动高端 N 沟道 MOSFET 来将 FPGA 与某个电压轨连接和断开。

电压轨单调上升

除了电压时序之外,启动过程中还可能要求电压单调上升。这意味着电压仅线性上升,如图 4 中的电压 A 所示。此图中的电压 B 是电压非单调上升的例子。在启动过程中,当电压上升到一定电平时负载开始拉大电流,就会发生这种情况。防止这种情况的一种办法是延长电源的软启动时间,并选择能够快速提供大量电流的电源转换器。

快速电源瞬变

FPGA 的另一个特点是它会非常迅速地开始抽取大量电流。这会在电源上造成很高的负载瞬变。出于这个原因,许多 FPGA 需要大量的输入电压去耦。陶瓷电容非常靠近地用在器件的 VCORE 和 GND 引脚之间。高达 1 mF 的值非常常见。如此高电容有助于降低对电源提供非常高峰值电流的需求。但是,许多开关稳压器和 LDO 规定了最大输出电容。FPGA 的输入电容要求可能超过电源允 许的最大输出电容。

电源不喜欢非常大的输出电容,原因有两点——

在启动期间,开关稳压器的输出电容看来像是短路的。对此问题有一个解决办法。较长的软启动时间可以让大电容组上的电压稳定地升高,电源不会进入短 路限流模式。

该电容值会成为调节环路的一部分。集成环路补偿的转换器不允许输出电容过大,以防止稳压器的环路不稳定。在高端反馈电阻上使用前馈电容常常可以影响控制环路。

针对电源的负载瞬变和启动行为,开发工具链(包括 LTpowerCAD,尤其是 LTspice)是非常有帮助的。该工具可以很好的建模和仿真,从而有效实现 FPGA 的大输入电容与电源的输出电容的去耦。 图 6 就展示了这一概念。

虽然 POL(负载端)电源的位置往往靠近负载,但在电源和 FPGA 输入电容之间常常存在一些 PCB 走线。当电路板上有多个彼此相邻的 FPGA 输入电容时,离电源最远的那些电容对电源传递函数的影响较小,因为它们之间不仅存在一些电阻, 还存在寄生走线电感。这些寄生电感允许 FPGA 的输入电容大于电源输出电容的最大限值,即使所有电容都连接到电路板上的同 一节点也无妨。在 LTspice 中,可以将寄生走线电感添加到原理图中,并且可以模拟这些影响。当电路建模中包含足够的寄生元件时,仿真结果接近实际结果。

电压精度

FPGA电源的电压精度通常要求非常高。3%的变化容差带是相当 常见的。例如,为使0.85 V的StraTIx V内核电压轨保持在3%的电压精度窗口内,要求全部容差带仅为25.5 mV。这个小窗口包括 负载瞬变后的电压变化以及直流精度。同样,对于此类严格要 求,包括LTpowerCAD和LTspice在内的可用电源工具链在电源设计 过程中非常重要。

FPGA 输入电容

为了快速提供大电流,FPGA 的输入电容通常选择陶瓷电容。此类电容很适合这种用途,但需要小心选择,使其真实电容值不随直流偏置电压而下降。一些陶瓷电容,尤其是 Y5U 型,当直流偏置电压接近其最大额定直流电压 时,其真实电容值会降低到只有标称值的20%。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

高带宽和软开关拓扑是应对当前苛刻的电动汽车电源电子技术挑战的理想解决方案

关键字: 软开关拓扑 电动汽车 电源

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

尼得科株式会社将扩大其位于泰国的服务器用水冷模块CDU(Coolant Distribution Unit)生产线,计划在目前的月产能200 台基础上于 2024 年 6 月增加到每月 2,000 台。

关键字: 人工智能 电源 电路板

在嵌入式系统开发、调试和测试过程中,J-Link作为一种高效的调试工具,为开发者提供了极大的便利。然而,要想充分发挥J-Link的功能,首先需要正确安装其驱动程序。本文将详细介绍J-Link驱动的安装过程,并深入解析其中...

关键字: jlink 嵌入式系统 嵌入式开发

与谷歌的合作使 Nordic 能够在 nRF Connect SDK 中嵌入开发人员软件,以构建与安卓移动设备兼容的谷歌Find My Device和未知跟踪器警报服务

关键字: 谷歌 SoC 嵌入式开发

为无处不在的端侧设备插上AI的翅膀,AMD发布第二代Versal™ 自适应 SoC

关键字: AMD FPGA 自适应SoC AI 边缘计算

一直以来,开关电源都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来开关电源的相关介绍,详细内容请看下文。

关键字: 电源 开关电源

在下述的内容中,小编将会对开关电源的相关消息予以报道,如果开关电源是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 电源 开关电源

以下内容中,小编将对24V开关电源的相关内容进行着重介绍和阐述,希望本文能帮您增进对24V开关电源的了解,和小编一起来看看吧。

关键字: 电源 开关电源

本文中,小编将对开关电源予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 电源 开关电源 开关管
关闭
关闭