当前位置:首页 > 嵌入式 > 嵌入式硬件

消费者已经开始将手机作为便携式娱乐终端,集成越来越多的功能与减小手机尺寸、增长电池寿命形成矛盾。解决这个问题的最好办法是从射频部分入手,本文介绍的数字射频技术能有效地降低射频部分的功耗和尺寸。
手机设计工程师希望在不影响电路板面积、耗电量和成本的前提下增加更多消费者想要的功能,最有可能实现此目标的方法是从手机射频电路着手。射频电路大都是模拟器件,不但可能占用高达五成的电路板面积,耗电量也颇为可观。事实上,由于射频器件所需的电路板空间实在太大,当设计工程师为了整合蓝牙、电视、辅助全球定位系统(A-GPS)、无线网络或其它功能而必须在手机中增加无线电电路时,总会发现除了加大产品体积外几乎别无选择。另外,增加射频器件必然会增加耗电量和成本。

图1:黄线部分代表的射频收发相关功能约占
手机电路板器件总数的三分之一。
要解决这个两难的困境,关键在于不增加器件就能扩大手机功能的技术,而且要尽量提高核心器件的工作效率,让手机增加很少的电路板面积、耗电量和成本就能执行更多的无线电操作。
数字射频技术
德州仪器(TI)的数字射频(DRP)技术正朝此目标迈进,它所能节省的电路板面积、耗电量和成本对手机设计工程师具有极大的意义。DRP技术的目标在于让模数转换和数模转换功能尽量靠近天线,同时以数字方式执行初始滤波以外的所有处理工作。这种做法既可提高性能,又能减少约一半的电路板空间、硅芯片面积和功耗。
许多设计工程师选择系统级芯片(SoC)和系统级封装(SIP)来开发手机。SIP可将半导体器件层叠封装在一起以节省电路板面积,现已成为多数射频前端电路的最佳选择。功率放大器、声表面波滤波器、射频开关和相关无源器件则最适合采用系统级封装模块。另一方面,透过深亚微米CMOS工艺技术把射频收发器以及系统基频处理功能集成为SoC也会带来许多好处,包括可以减少耗电量、成本、电路板面积和测试成本,同时提高性能、手机制造良率以及加速测量、。
深亚微米逻辑工艺提供极高的逻辑电路密度和频率,设计工程师希望能利用SoC发挥这种工艺技术的优点。虽然这表示工程师可能要为深亚微米CMOS工艺发展新型无线电架构,但它确实为设计工程师带来许多重大好处。其中最重要的就是随着CMOS晶圆工艺技术进步而导致开关速度不断加快,这些器件也能提高它们的采样速率。输入信号的超采样可以减少混叠噪声(aliasing)问题并放宽输入电路的设计要求,设计工程师可以采用更复杂的滤波技术,并且在更靠近天线的位置执行模数转换。除此之外,SoC的集成也能提高系统生产良率,这是因为有更多功能改由逻辑电路实现,它们不像模拟射频电路会受到参数良率损失的影响。利用尺寸更小的先进工艺技术设计无线电功能还可减少电路板尺寸和硅片面积。
数字无线电技术只需少数无源器件,所以只要将收发器和数字基带处理功能集成在一起就可大幅减少电路板面积。高集成度SoC的成本有时虽略高于分立器件,但器件数通常也较少,使得产品的设计、测试和调试成本都能大幅下降。设计复杂性的降低还能加快新产品上市时间,这是高集成度器件的另一项附带的好处。
减少系统器件会降低功率需求,但大幅降低耗电的关键仍在于数字逻辑的耗电量非常小,CMOS工艺的功耗也远低于其它工艺,如特殊模拟器件常用的SiGe BiCMOS技术。事实上,90纳米CMOS技术早就用于实际生产,65纳米已有样品供应,45纳米工艺的发展也有一段时间。相比之下,SiGe BiCMOS还无法将电路结构尺寸缩小到如此程度,目前多数SiGe射频器件仍在使用180纳米技术。
数字射频技术的发展
数字CMOS技术是在最近几年才将时钟速度提高和耗电量降低至一定程度,使得射频信号的数字处理得以实现。利用数字技术处理射频信号时,时钟速度必须等于无线电频率,例如蓝牙应用的频率就高达2.4GHz。由于个人计算机和DSP的速率早已超过此水平,设计工程师现在已能将数字处理用于无线射频器,利用到数字处理技术的优势。

图2:无线电功能整合的可能选项。
随着工艺技术日益精密,数字工艺很容易就制造出更小的电路结构。然而无线电单元如前所述总是会有些模拟电路,要将它们完全消除就必须采用全新的无线电架构,系统设计也需要适度修改。尽管如此,这些无线电通常仍很容易升级到更先进工艺,因为它们的电路多半已是数字电路。
为了达到模拟和射频电路的某些严苛要求,DRP设计会将模拟电路的部份功能转移到数字电路,这让SoC也能采用90纳米或65纳米的CMOS工艺,厂商还能利用标准CMOS流程制造电阻和电容等模拟与射频整合所需的大部份器件,进而降低成本并提高功能集成度。
在我们的先进技术中,是以铜作为连接导线,铜的良好导电性最适合将电感和电容等无源器件集成在一起。采用多层导线的新型3D电容设计可在更小面积上制造出更大

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

从无处不在的射频技术到为无处不在的应用赋能,Qorvo凭借广泛的产品矩阵和差异化的技术优势,正在满足市场对高功率、高能效、高性能系统的应用需求。

关键字: Qorvo 射频 Wi-Fi 7 BMS 压感交互

4月25日,IME2024巡展第二站——第二届(南京)微波毫米波及天线技术发展再度聚势来袭!继首站成都站后,纳特通信再次受邀参展,并携带系统级、设备级电磁环境效应测试系统等众多明星产品亮相135展位。

关键字: 射频 纳特通信

D类音频放大器参考设计(EPC9192)让模块化设计具有高功率和高效,从而可实现全定制、高性能的电路设计。

关键字: 音频放大器 电路设计

2024年4月7日,高性能舌簧继电器的领先制造商Pickering Electronics将于4月9日至10日参加在北京国家会议中心举行的EDI CON(电子设计创新大会),并展示用于射频和高速数字开关的同轴舌簧继电器,...

关键字: 继电器 数字开关 射频

为了追求更高的数据传输速率和更低的延迟,Wi-Fi7直接将“技能树”点满,新增了很多新的特性。虽然这种46Gbps最大数据速率在用户侧的实现可能尚需时日,但设备厂商已经纷纷摩拳擦掌,开始了Wi-Fi7设备的开发和出货。

关键字: Wi-Fi7 射频 是德科技 E7515W 无线连接 Keysight

可调电容作为一种重要的电子元器件,在电路设计中具有广泛的应用。本文将对可调电容的基本概念、工作原理、调用方法以及应用场景进行详细探讨,旨在帮助读者更好地理解和应用可调电容。

关键字: 可调电容 电子元器件 电路设计

器件符合IrDA®标准,采用内部开发的新型IC和表面发射器芯片技术,可以即插即用的方式替换现有解决方案。

关键字: 射频 收发器

是德科技(Keysight Technologies, Inc.)与香港中文大学(深圳)合作开展了一门针对射频微波教学的课程,旨在提高学习成效,加深理论与实践的结合,强化教学过程中的动手实践过程。利用课件、教学实验板和实...

关键字: 射频 链路特性 微波

2024年2月26日,国际通信行业盛会MWC 24于西班牙巴塞罗那召开,全球通信及其相关供应链的顶尖企业荟聚一堂,展示移动通信领域的前沿研究成果,与国际行业同仁展开深入技术交流。三安集成作为射频前端整合解决方案服务提供商...

关键字: 三安集成 射频 通信

业内消息,近日新加坡 RF GaN(射频氮化镓)芯片供应商 Gallium Semiconductor(加联赛半导体)突然终止业务并解雇所有员工,包括位于荷兰奈梅亨的研发中心。

关键字: 芯片 射频 氮化镓 Gallium RF GaN
关闭
关闭