关闭
关闭
首页 > 嵌入式硬件 > 电路设计

上世纪70年代以太网诞生了,发展至如今我们对它并不陌生,浮现在现代化生活的每一个角落,或许正因它的无所不在让其带着神秘的色彩,今天我们将从其中一个角度揭开其神秘的面纱。

本文引用地址: http://embed.21ic.com/hardware/circuit/201801/50488.html

我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

下图 1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

 

图 1 以太网典型应用

1. 图 2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图 2介绍以太网电路的布局、布线需注意的要点。

 

图 2变压器没有集成在网口连接器的电路PCB布局、布线参考

a) RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去;

b) PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小;

c) 网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小;

d) 网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil);

e) 变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级;

f) 指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开;

g) 用于连接GND和PGND的电阻及电容需放置地分割区域。

2. 以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点:

a) 优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里;

b) 当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%;

c) 差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射;

d) 差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

 

3. 变压器集成在连接器的以太网电路的PCB布局、布线较不集成的相对简单很多,下图 3是采用一体化连接器的网口电路的PCB布局、布线参考图:

 

图 3一体化连接器的网口PCB布局、布线参考图

从上图可以看出,图 3和图 1的不同之处在于少了网口变压器,其它大体相同。不同之处主要体现在网口变压器已集成至连接器里,所以地平面无需进行分割处理,但我们依然需要将一体化连机器的外壳连接到连续的地平面上。

以太网布局布线方面的要大致就这些,好的PCB布局布线不仅可以保证电路性能,还可以提高电路性能,笔者水平有限,不足之处欢迎指正交流。

换一批

延伸阅读

[新鲜事] 超级计算机通过以太网连接400PB存储系统

超级计算机通过以太网连接400PB存储系统

美国国家超级计算应用中心(National Center for Supercomputing Applications)正计划推出一个包含380PB磁带存储容量和由17000个SATA驱动器组成的25PB在线磁盘存储的存储基础设施。这个大......

关键字:400 PB 超级计算机 以太网连接

[新鲜事] 以太网络迎来全新 IEEE 标准

以太网络迎来全新 IEEE 标准

日前 IEEE 以太网络工作组(IEEE Ethernet Working Group)对 IEEE 802.3 标准做出了修订,为其加入了 100Gbps 规格(1Tbps 还要再等一下啦),希望未来它能在车内网络、数据中心网络等领域有更......

关键字:IEEE 以太网络 标准

[行业资讯] IDT同步设备时间源与通用频率转换器提供可扩展解决方案

IDT同步设备时间源与通用频率转换器提供可扩展解决方案

加利福尼亚州圣何塞市, Integrated Device Technology, Inc. (IDT)为其产品组合新推出了 SyncE(同步以太网)解决方案,其中包含新的 SETS(同步设备定时源)设备和第三代通用......

关键字: IDT 同步以太网 UFTTM SETS

[趣科技] 惊喜!新材料令手机碎屏可在24小时内自行修复

惊喜!新材料令手机碎屏可在24小时内自行修复

报道称,在研究人员发明了一种可以自我修复的“弹性”屏幕之后,智能手机屏幕划痕累累以及会被摔裂的日子可能很快就屈指可数了。......

关键字:手机碎屏 手机材料

[趣科技] 黑科技!大叔将跑步机与自行车结合发明步行车,获上班族追捧

黑科技!大叔将跑步机与自行车结合发明步行车,获上班族追捧

随着共享单车的兴起,市民兴起了一股单车潮,但传统的单车锻炼的主要是腿部力量,荷兰的一位工程师大叔发明了一种高科技的步行车。让你在方便出行的同时又锻炼了身体。......

关键字:共享单车 高科技 步行车

[新鲜事] AMD Ryzen在Windows 10下支持不佳 这个锅微软自己背了

AMD Ryzen在Windows 10下支持不佳 这个锅微软自己背了

此前有报道称,AMD Ryzen在Windows 10下支持不佳的情况引起了网友的关注,而据报道,这可能是涉及SMT(同步多线程)的负载分配和缓存出错。而外媒都倾向于把它归咎给微软,也有人愤愤不平,难道AMD自己就一点事也没有?......

关键字:AMD Ryzen Windows 10

[猎聘集] 神脑洞!用电子元器件来比喻人生是怎样的?

神脑洞!用电子元器件来比喻人生是怎样的?

热恋中的女人的心就像被加了一个差动放大器,男朋友的一切优点都被当成差模信号被放大,而他的缺点都被选择为共模信号抑制掉了。......

关键字:电子元器件 二极管 三极管

[新鲜事] 日本政府人士称东芝闪存可以卖给美国,不能卖给中国

日本政府人士称东芝闪存可以卖给美国,不能卖给中国

东芝到底要卖给谁不光是看谁出价高,还有别的问题要考虑——来自日本政府的经产省官员表示东芝公司可以卖给苹果这样的美国公司,中国公司是不行的,因为要防止技术泄密。......

关键字:东芝闪存 日本政府
条评论

我 要 评 论

网友评论

大家都爱看

  • 兆易创新研发14nm嵌入式异构AI芯片

    昨日,兆易创新发表公告,重申了收购上海思立微的目的。兆易创新表示,这次产业并购,旨在整合境内优质的芯片设计领域资产,获取智能人机交互领域的核心技术,拓展并丰富公司产品线,在整体上形…

    2018-01-31
  • 华为的优势,就是自家的各种自研芯片

    CPU即中央处理器,是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。

    2017-08-16
  • 你不知道Ryzen芯片有多火?来看看AMD的股票吧

    据外媒报道,美银美林认为,AMD最新的Ryzen芯片可能会引发一波销售浪潮,进而推动该股继续上涨。它认为AMD股票还有40%以上的上涨空间。

    2017-08-16
  • 国产芯片:厚积薄发,强势崛起

    关于国产芯片,是近几年才有崛起的势头,可是在几年之前,国产芯片还处于“沉睡”的状态,尤其是手机芯片,几乎大部分都依赖进口,而且国外的市场几乎被高通和联发科所垄断,也就展讯还在市场边…

    2017-08-16
  • 为了数据安全 大疆无人机增加隐私飞行功能

    大疆周一表示,在美国陆军因为“网络缺陷”而要求其成员停用大疆无人机后,这家中国无人机制造商将加强无人机的数据安全性。 大疆政策和法务副总裁布伦丹&middot…

    2017-08-15