当前位置:首页 > 嵌入式 > 嵌入式电路图
[导读]给从机下发不同的指令,从机去执行不同的操作,这个就是判断一下功能码即可,和我们前边学的实用串口例程是类似的。多机通信,无非就是添加了一个设备地址判断而已,难度也

给从机下发不同的指令,从机去执行不同的操作,这个就是判断一下功能码即可,和我们前边学的实用串口例程是类似的。多机通信,无非就是添加了一个设备地址判断而已,难度也不大。我们找了一个 Modbus 调试精灵,通过设置设备地址,读写寄存器的地址以及数值数量等参数,可以直接替代串口调试助手,比较方便的下发多个字节的数据,如图18-7所示。我们先来就图中的设置和数据来对 Modbus 做进一步的分析,图中的数据来自于调试精灵与我们接下来要讲的例程之间的交互。

 

图18-7 Modbus 调试精灵

如图,我们的 USB 转 RS485 模块虚拟出的是 COM5,波特率9600,无校验位,数据位是8位,1位停止位,设备地址假设为1。

写寄存器的时候,如果我们要把01写到一个地址是0000的寄存器地址里,点一下“写入”,就会出现发送指令:01 06 00 00 00 01 48 0A。我们来分析一下这帧数据,其中01是设备地址,06是功能码,代表写寄存器这个功能,后边跟00 00表示的是要写入的寄存器的地址,00 01就是要写入的数据,48 0A就是 CRC 校验码,这是软件自动算出来的。而根据 Modbus 协议,当写寄存器的时候,从机成功完成该指令的操作后,会把主机发送的指令直接返回,我们的调试精灵会接收到这样一帧数据:01 06 00 00 00 01 48 0A。

假如我们现在要从寄存器地址0002开始读取寄存器,并且读取的数量是2个。点一下“读出”,就会出现发送指令:01 03 00 02 00 02 65 CB。其中01是设备地址,03是功能码,代表读寄存器这个功能,00 02就是读寄存器的起始地址,后一个00 02就是要读取2个寄存器的数值,65 CB就是 CRC 校验。而接收到的数据是:01 03 04 00 00 00 00 FA 33。其中01是设备地址,03是功能码,04代表的是后边读到的数据字节数是4个,00 00 00 00分别是地址00 02和00 03的寄存器内部的数据,而 FA 33 就是 CRC 校验了。

似乎越来越明朗了,所谓的 Modbus 通信协议,无非就是主机下发了不同的指令,从机根据指令的判断来执行不同的操作而已。由于我们的开发板没有 Modbus 功能码那么多相应的功能,我们在程序中定义了一个数组 regGroup[5],相当于5个寄存器,此外又定义了第6个寄存器,控制蜂鸣器,通过下发不同的指令我们改变寄存器组的数据或者改变蜂鸣器的开关状态。在 Modbus 协议里寄存器的地址和数值都是16位的,即2个字节,我们默认高字节是 0x00,低字节就是数组 regGroup 对应的值。其中地址 0x0000 到 0x0004 对应的就是 regGroup数组中的元素,我们写入的同时把数字又显示到 1602 液晶上,而 0x0005 这个地址,写入 0x00,蜂鸣器就不响,写入任何其它数值,蜂鸣器就报警。我们单片机的主要工作也就是解析串口接收的数据执行不同操作。 /*Lcd1602.c 文件程序源代码***/ (此处省略,可参考之前章节的代码) /****RS485.c 文件程序源代码*****/ (此处省略,可参考之前章节的代码) /****CRC16.c 文件程序源代码****/

/* CRC16 计算函数,ptr-数据指针,len-数据长度,返回值-计算出的 CRC16 数值 */

unsigned int GetCRC16(unsigned char *ptr, unsigned char len){

unsigned int index;

unsigned char crch = 0xFF; //高 CRC 字节

unsigned char crcl = 0xFF; //低 CRC 字节

unsigned char code TabH[] = { //CRC 高位字节值表

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40

} ;

unsigned char code TabL[] = { //CRC 低位字节值表

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,

0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,

0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,

0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,[!--empirenews.page--]

0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,

0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,

0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,

0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,

0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,

0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,

0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,

0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,

0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,

0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,

0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,

0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,

0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,

0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,

0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,

0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,

0x43, 0x83, 0x41, 0x81, 0x80, 0x40

} ;

while (len--){ //计算指定长度的 CRC

index = crch ^ *ptr++;

crch = crcl ^ TabH[index];

crcl = TabL[index];

}

return ((crch<<8) " crcl);

}

关于 CRC 校验的算法,如果不是专门学习校验算法本身,大家可以不去研究这个程序的细节,直接使用现成的函数即可。 /*****main.c 文件程序源代码**/

#include

sbit BUZZ = P1^6;

bit flagBuzzOn = 0; //蜂鸣器启动标志

unsigned char T0RH = 0; //T0 重载值的高字节

unsigned char T0RL = 0; //T0 重载值的低字节

unsigned char regGroup[5]; //Modbus 寄存器组,地址为 0x00~0x04

void ConfigTimer0(unsigned int ms);

extern void UartDriver();

extern void ConfigUART(unsigned int baud);

extern void UartRxMonitor(unsigned char ms);

extern void UartWrite(unsigned char *buf, unsigned char len);

extern unsigned int GetCRC16(unsigned char *ptr, unsigned char len);

extern void InitLcd1602();

extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);

void main(){

EA = 1; //开总中断

ConfigTimer0(1); //配置 T0 定时 1ms

ConfigUART(9600); //配置波特率为 9600

InitLcd1602(); //初始化液晶

while (1){

UartDriver(); //调用串口驱动

}

}

/* 串口动作函数,根据接收到的命令帧执行响应的动作

buf-接收到的命令帧指针,len-命令帧长度 */

void UartAction(unsigned char *buf, unsigned char len){

unsigned char i;

unsigned char cnt;

unsigned char str[4];

unsigned int crc;

unsigned char crch, crcl;

/* 本例中的本机地址设定为 0x01,

如数据帧中的地址字节与本机地址不符,

则直接退出,即丢弃本帧数据不做任何处理 */

if (buf[0] != 0x01){

return;

}

//地址相符时,再对本帧数据进行校验

crc = GetCRC16(buf, len-2); //计算 CRC 校验值

crch = crc >> 8;

crcl = crc & 0xFF;

if ((buf[len-2]!=crch) || (buf[len-1]!=crcl)){

return; //如 CRC 校验不符时直接退出

}

//地址和校验字均相符后,解析功能码,执行相关操作

switch (buf[1]){

case 0x03: //读取一个或连续的寄存器

if ((buf[2]==0x00) && (buf[3]<=0x05)){ //只支持 0x0000~0x0005

if (buf[3] <= 0x04){

i = buf[3]; //提取寄存器地址

cnt = buf[5]; //提取待读取的寄存器数量

buf[2] = cnt*2; //读取数据的字节数,为寄存器数*2

len = 3; //帧前部已有地址、功能码、字节数共 3 个字节

while (cnt--){

buf[len++] = 0x00; //寄存器高字节补 0

buf[len++] = regGroup[i++]; //寄存器低字节

}

}else{ //地址 0x05 为蜂鸣器状态

buf[2] = 2; //读取数据的字节数

buf[3] = 0x00;

buf[4] = flagBuzzOn;

len = 5;

}

break;

}else{ //寄存器地址不被支持时,返回错误码

buf[1] = 0x83; //功能码最高位置 1

buf[2] = 0x02; //设置异常码为 02-无效地址

len = 3;

break;

}

case 0x06: //写入单个寄存器

if ((buf[2]==0x00) && (buf[3]<=0x05)){ //只支持 0x0000~0x0005

if (buf[3] <= 0x04){

i = buf[3]; //提取寄存器地址

regGroup[i] = buf[5]; //保存寄存器数据

cnt = regGroup[i] >> 4; //显示到液晶上

if (cnt >= 0xA){

str[0] = cnt - 0xA + ‘A‘;

}else{

str[0] = cnt + ‘0‘;

}

cnt = regGroup[i] & 0x0F;

if (cnt >= 0xA){

str[1] = cnt - 0xA + ‘A‘;

}else{

str[1] = cnt + ‘0‘;

}

[!--empirenews.page--]

str[2] = ‘‘;

LcdShowStr(i*3, 0, str);

}else{ //地址 0x05 为蜂鸣器状态

flagBuzzOn = (bit)buf[5]; //寄存器值转为蜂鸣器的开关

}

len -= 2; //长度-2 以重新计算 CRC 并返回原帧

break;

}else{ //寄存器地址不被支持时,返回错误码

buf[1] = 0x86; //功能码最高位置 1

buf[2] = 0x02; //设置异常码为 02-无效地址

len = 3;

break;

}

default: //其它不支持的功能码

buf[1] |= 0x80; //功能码最高位置 1

buf[2] = 0x01; //设置异常码为 01-无效功能

len = 3;

break;

}

crc = GetCRC16(buf, len); //计算返回帧的 CRC 校验值

buf[len++] = crc >> 8; //CRC 高字节

buf[len++] = crc & 0xFF; //CRC 低字节

UartWrite(buf, len); //发送返回帧

}

/* 配置并启动 T0,ms-T0 定时时间 */

void ConfigTimer0(unsigned int ms){

unsigned long tmp; //临时变量

tmp = 11059200 / 12; //定时器计数频率

tmp = (tmp * ms) / 1000; //计算所需的计数值

tmp = 65536 - tmp; //计算定时器重载值

tmp = tmp + 33; //补偿中断响应延时造成的误差

T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节

T0RL = (unsigned char)tmp;

TMOD &= 0xF0; //清零 T0 的控制位

TMOD |= 0x01; //配置 T0 为模式 1

TH0 = T0RH; //加载 T0 重载值

TL0 = T0RL;

ET0 = 1; //使能 T0 中断

TR0 = 1; //启动 T0

}

/* T0 中断服务函数,执行串口接收监控和蜂鸣器驱动 */

void InterruptTimer0() interrupt 1{

TH0 = T0RH; //重新加载重载值

TL0 = T0RL;

if (flagBuzzOn){ //执行蜂鸣器鸣叫或关闭

BUZZ = ~BUZZ;

}else{

BUZZ = 1;

}

UartRxMonitor(1); //串口接收监控

}

大家可以看到负责解析协议的 UartAction 函数很长,因为协议解析本来就是一件很繁琐的事情。我们的例程仅解析执行了两个功能命令,就已经有近百行程序了,如果你需要解析更多的功能命令的话,那么建议把每个功能都做一个函数,然后在相应的 case 分支里调用即可,这样就不会使单个函数过于庞大而难以维护。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器

随着科技的飞速发展,单片机和嵌入式系统在现代电子设备中的应用越来越广泛。它们不仅提高了设备的智能化水平,还推动了各行各业的创新与发展。在单片机和嵌入式系统的开发中,编程语言的选择至关重要。本文将深入探讨单片机和嵌入式系统...

关键字: 单片机 嵌入式系统 电子设备
关闭
关闭